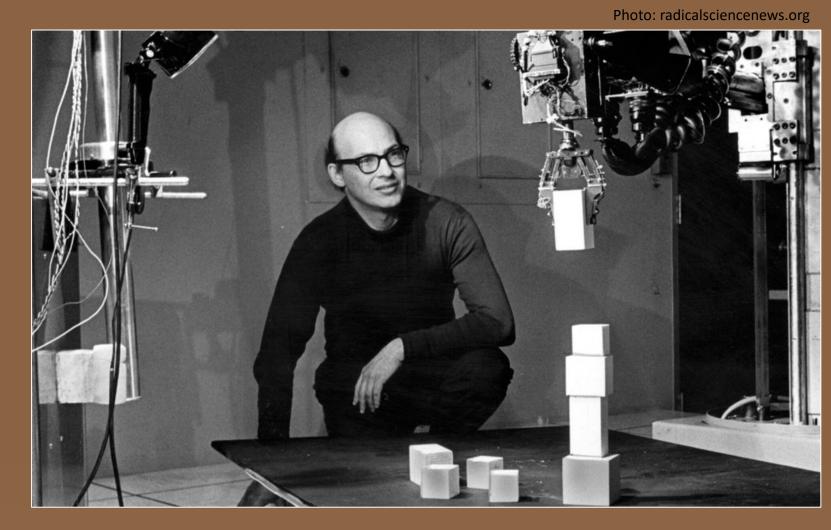


Approaching Healthcare with Cognitive Systems Thinking: An Application of "Frame-Systems"

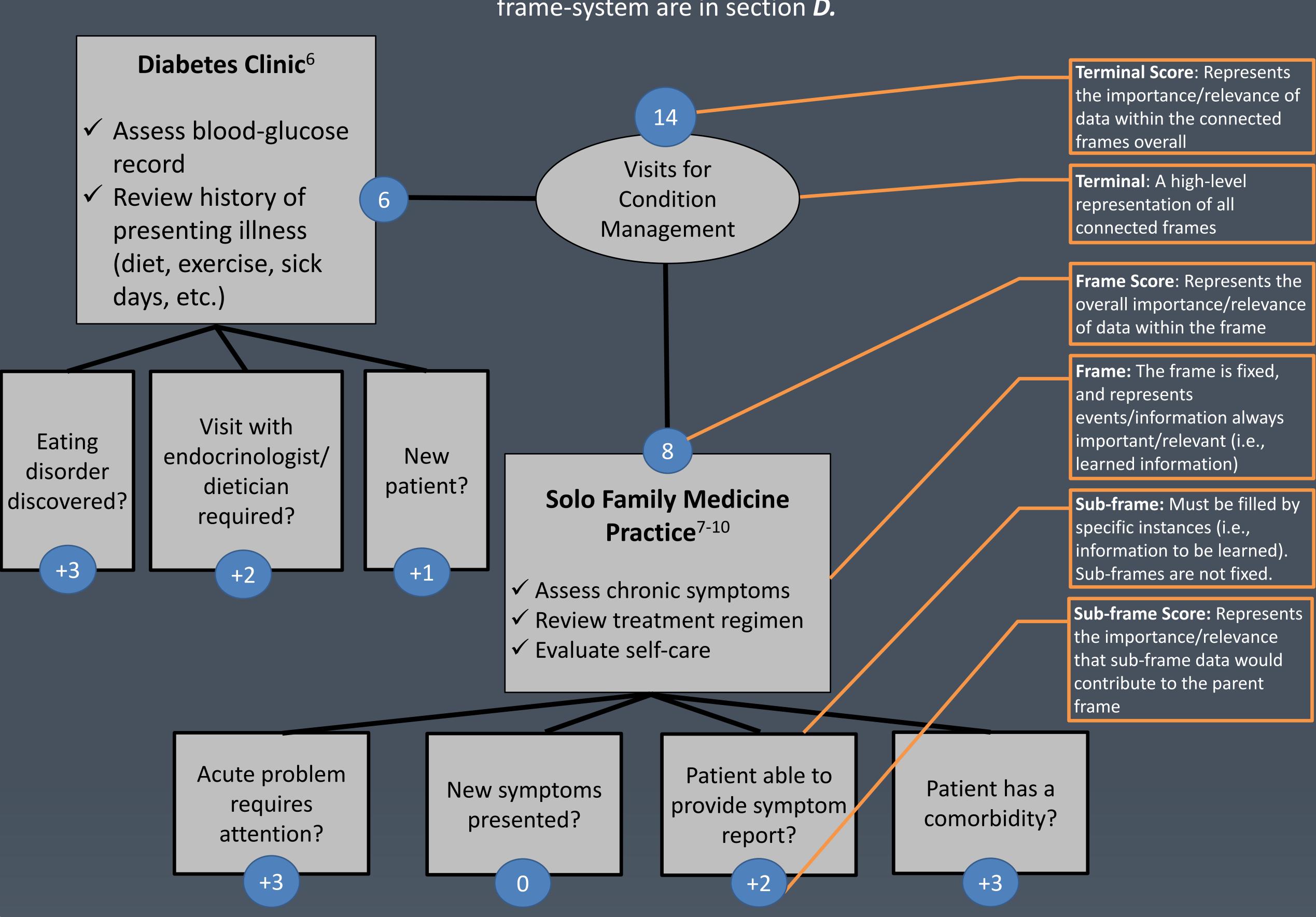

Braden K. Tompke, B.Sc.
University of Waterloo, Public Health and Health Systems

A. Background

Cognitive systems thinking¹ applies theories of cognition (e.g. Schema Theory)^{2,3} to better understand and construct 'intelligent' systems. Assessing intelligence of a system (e.g. healthcare) using a cognitive systems framework involves questioning how the system learns (i.e., gathers information) and effectively responds (i.e., makes decisions) within changing environments.

B. Frame-Systems

The frame-systems concept has been used to represent intelligence in machines (e.g. machine-vision) and has been suggested as useful in other systems.⁴ I propose use of frame-systems in the healthcare system as a helpful strategy for learning and effectively responding to changing environments. The strategy entails finding representations of a scenario within which problems are easier to discover and solve.⁴


Marvin Minsky (Co-Founder of the M.I.T. Artificial Intelligence Research Lab; Coined the term 'Frame-Systems')

A frame-system relevant to healthcare would be able to:

- Explore a scenario/problem space⁵
- Model decision-making (cause and effect scenarios)
- Measure information flow
- Assess common needs in the system

C. Applying the Frame-Systems Concept

A frame is a collection of questions to be asked about a hypothetical situation: it specifies issues to be raised and methods to be used in dealing with them. Frame-systems are collections of related frames.⁴ Here, the frame-systems concept is used to model the relevance/importance of data for discovering and answering questions regarding management of chronic disease. Note the diagram numbers: *higher* numbers represent data that is more important for answering the research question. In this example, the research question has not been specified, so the numbers are arbitrary. The frame-system legend is outlined in **orange** and ways to approach a frame-system are in section **D**.

D. How to Approach a Frame-System

A theoretical notion in cognitive science is that questions arise from a point of view.¹¹ Frame-systems thinking may provide points of view that generate novel questions/considerations in health care.

Frame-systems thinking primarily entails asking questions,⁴ such as:

- 1. What additional frames could be added to the terminal to improve perspective of the scenario/problem space?
- 2. Is there a frame that could be replaced by a better frame?
- 3. How important is the data in a subframe? Will sub-frame data be more, or less important in the future?
- 4. Is there a better way to organize the frame-system?
- 5. How might the frame-system be organized [x] years from now?
- 6. Are collections of data in the subframes important enough to warrant revisions in the parent frame?

E. Guiding Questions Around Implementation

The frame-systems concept will be used to guide questions around implementation of the Global Assessment of Severity of Illness Scale (GASI),¹² a single-item scale that can be used to measure severity in multiple conditions. Frame-systems questions will explore where application of the GASI can have the greatest impact in research and clinical practice.

References

- 1. Cognitive Systems Program: The University of British Columbia [Internet]. 2018 [cited 2018 Apr 21]. p. 1. Available from: https://cogsys.ubc.ca/
- Bartlett FC. Remembering: A Study in Experimental and Social Psychology. Cambridge, Soc Psychol. 1932;1–11.
 Groome D, Dewart H, Esgate A, Kemp R. An Introduction to Cognitive Psychology. Processes and Disorders. Psychology. 1999.
- Groome D, Dewart H, Esgate A, Kemp R. An Introduction to Cognitive Psychology. Processes and Disorders. Psychology. 1999.

 Minsky M. Artifical Intelligence Memo No. 306 A framework for representing knowledge [Internet]. 1974. Available from: http://hdl.handle.net/1721.1/6089
- Newell A, Simon HA. Human Problem Solving. In Englewood Cliffs: Prentice Hall; 1972.
- 6. Lantz E. (Boris Clinic, McMaster Children's Hospital, Hamilton Health Sciences) Interviewed by: Tompke B. 2018 Apr 18. 2018.
 7. Østbye, Truls; Yarnall, Kimberly S. H.; Krause, Katrina M.; Pollak, Kathryn I.; Gradison, Margaret; Michener JL. Is There Time for Management of Patients With Chronic Diseases in Primary Care? Ann Fam Med. 2005;3(3):209–14.
- Von Korff M, Glasgow RE, Sharpe M. ABC of psychological medicine: Organising care for chronic illness. Bmj. 2002;325(7355):94.
- 9. Wagner EH, Austin BT, Korff M Von. Organizing Care for Patients with Chronic Illness. 1996;74(4):511–44.
 10. Bodenheimer T, Wagner EH. Improving Primary Care for Patients With Chronic Illness. JAMA Intern Med. 2002;288(14):1775–9.
- 11. Newell A. Artificial Intelligence and the Concept of Mind. In: The Structure of Belief Systems Computer Models of Thought and Language. San Francisco: Freeman; 1973. p. 1–60.
 - Tompke BK, Ferro MA. Validating a Global Measure of Severity in Children with Chronic Conditions. 2018.

Acknowledgements

Dr. Ronald Rensink, Associate Professor, UBC [Research Area: Visual Cognition, Visual Analytics]

Dr. Robert Woodham, Professor Emeritus, UBC [Research Area: Machine Vision]